Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
J Am Chem Soc ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489242

RESUMO

We present the first example of an 99TcO4- anion entrapped within the cavity of a silver cluster, revealing an unprecedented photoinduced charge transfer phenomenon. [Ag24(C≡CtBu)20(99TcO4)]·(BF4)3 (denoted as 99TcO4-@Ag24) was successfully synthesized and structurally characterized. Single-crystal X-ray diffraction and Raman spectroscopy reveal that the tetrahedral structure of the 99TcO4- anion sustains significant symmetry breaking with weakened Tc-O bond strength under confinement within the Ag24(C≡CtBu)204+ cluster. Notably, 99TcO4-@Ag24 exhibits a broadband electronic absorption spectrum in the visible region, which was absent for the other 99TcO4--containing compounds. Density functional theory calculations elucidate that host-guest electrostatic interactions result in an electron polarization effect between the 99TcO4- anion core and the Ag24 cationic shell. The emergence of an absorption band in 99TcO4-@Ag24 is rationalized by intermolecular charge transfer from the Ag24 electronic states to the lowest unoccupied molecular orbitals of 99TcO4- instead of the intramolecular electron transition observed in other 99TcO4--containing compounds.

2.
J Am Chem Soc ; 146(10): 6697-6705, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38419157

RESUMO

Synthesizing large metal-organic framework (MOF) single crystals has garnered significant research interest, although it is hindered by the fast nucleation kinetics that gives rise to numerous small nuclei. Given the different chemical origins inherent in various types of MOFs, the development of a general approach to enhancing their crystal sizes presents a formidable challenge. Here, we propose a simple isotopic substitution strategy to promote size growth in MOFs by inhibiting nucleation, resulting in a substantial increase in the crystal volume ranging from 1.7- to 165-fold. Impressively, the crystals prepared under optimized conditions by normal approaches can be further enlarged by the isotope effect, yielding the largest MOF single crystal (2.9 cm × 0.48 cm × 0.23 cm) among the one-pot synthesis method. Detailed in situ characterizations reveal that the isotope effect can retard crystallization kinetics, establish a higher nucleation energy barrier, and consequently generate fewer nuclei that eventually grow larger. Compared with the smaller crystals, the isotope effect-enlarged crystal shows 33% improvement in the X-ray dose rate detection limit. This work enriches the understanding of the isotope effect on regulating the crystallization process and provides inspiration for exploring potential applications of large MOF single crystals.

3.
Inorg Chem ; 63(8): 3642-3647, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38346447

RESUMO

Two X-ray scintillators based on organic-inorganic hybrids were constructed by judiciously incorporating lanthanide cations and organic ligands within a single material. The obtained Eu-pba and Tb-pba not only feature excellent radiation, hydrolytic, and thermal stabilities but also exhibit a linear response to the X-ray dose rate with detection limits of 4.92 and 3.17 µGy s-1, respectively. We further present a flexible scintillator film fabricated by embedding Tb-pba in a polydimethylsiloxane (PDMS) polymer. Their incorporation enables X-ray imaging with a spatial resolution of approximately 10 lp mm-1. These results emphasize the potential of lanthanide organic-inorganic hybrids to achieve outstanding performance in X-ray scintillation and imaging.

5.
J Am Med Inform Assoc ; 31(3): 776-783, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38269644

RESUMO

OBJECTIVES: To provide balanced consideration of the opportunities and challenges associated with integrating Large Language Models (LLMs) throughout the medical school continuum. PROCESS: Narrative review of published literature contextualized by current reports of LLM application in medical education. CONCLUSIONS: LLMs like OpenAI's ChatGPT can potentially revolutionize traditional teaching methodologies. LLMs offer several potential advantages to students, including direct access to vast information, facilitation of personalized learning experiences, and enhancement of clinical skills development. For faculty and instructors, LLMs can facilitate innovative approaches to teaching complex medical concepts and fostering student engagement. Notable challenges of LLMs integration include the risk of fostering academic misconduct, inadvertent overreliance on AI, potential dilution of critical thinking skills, concerns regarding the accuracy and reliability of LLM-generated content, and the possible implications on teaching staff.


Assuntos
Competência Clínica , Educação Médica , Humanos , Reprodutibilidade dos Testes , Idioma , Aprendizagem
6.
Peptides ; 174: 171164, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272240

RESUMO

Neuropeptide FF (NPFF) is an octapeptide that regulates various cellular processes, especially pain perception. Recently, there has been a growing interest in understanding the modulation of NPFF in neuroendocrine inflammation. This review aims to provide a thorough overview of the regulation of NPFF in macrophage-mediated biological processes. We delve into the impact of NPFF on macrophage polarization, self-renewal modulation, and the promotion of mitophagy, facilitating the transition from thermogenic fat to fat-storing adipose tissue. Additionally, we explore the NPFF-dependent regulation of the inflammatory response mediated by macrophages, its impact on the differentiation of macrophages, and its capacity to induce alterations in the transcriptome of macrophages. We also address the potential of NPFF as a therapeutic molecule in the field of neuroendocrine inflammation. Overall, our work offers an understanding of the influence of NPFF on macrophage, facilitating the exploration of its pharmacological significance in future studies.


Assuntos
Oligopeptídeos , Receptores de Neuropeptídeos , Humanos , Oligopeptídeos/farmacologia , Macrófagos , Inflamação
8.
Graefes Arch Clin Exp Ophthalmol ; 262(3): 769-776, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37878036

RESUMO

PURPOSE: To report the characteristics and the visual and anatomical outcomes of secondary macular holes (SMHs) diagnosed after rhegmatogenous retinal detachment (RRD) repair and their associated factors. METHODS: Retrospective, interventional case series. All consecutive patients who were diagnosed with SMH after RRD repair at Beijing Tongren eye center from January 2016 to April 2021 were included. Patients who had their primary RRD repair in other hospitals and were referred to our center after diagnosis of SMH were also included. The minimum follow-up time after RRD repair was 6 months. RESULTS: 37 SMHs were diagnosed within a series of 5696 RRDs. Including 24 eyes referred from other hospitals after the diagnosis of SMH, 61 eyes were included. The type of primary RRD repair surgery included 22/61 (36%) eyes with scleral buckling procedure (SBP) and 39/61 (64%) eyes with pars plana vitrectomy (PPV). 21/61 (34%) eyes had recurrent RD. The median time to SMH diagnosis was 150 days (range, 7 ~ 4380 days). Macular hole (MH) closure was achieved in 77% eyes. Visual acuity (VA) improvement of at least 2 lines of Snellen's visual acuity was observed in 51% eyes. Final MH closure status was associated with preoperative MH diameter (for every 50 µm increment) (P = 0.046, OR = 0.875, 95%CI: 0.767 ~ 0.998). VA improvement was associated with final MH closure status (P = 0.009, OR = 8.742, 95%CI: 1.711 ~ 44.672). Final VA (logMAR) was associated with recurrent RD (P < 0.001, B = 0.663, 95%CI: 0.390 ~ 0.935), preoperative MH diameter (P = 0.001, B = 0.038, 95%CI: 0.017 ~ 0.058), VA at the time of SMH diagnosis (P < 0.001, B = 0.783, 95%CI: 0.557 ~ 1.009) and final MH closure status (P = 0.024, B = -0.345, 95%CI: -0.644 ~ -0.046). For patients without recurrent RD, VA improvement and final VA was associated with final MH closure status (P = 0.016 and P < 0.001, respectively), while for patients with recurrent RD, VA improvement or final VA did not associate with final MH closure status (P > 0.05). CONCLUSION: For SMH diagnosed after RRD repair, final MH closure status was associated with preoperative MH diameter. Recurrent RD, larger preoperative MH diameter, worse VA at the time of SMH diagnosis and failed MH closure are predictive factors for worse final VA. Visual outcome is associated with final MH closure status in patients without recurrent RD, but not as so in patients with recurrent RD.


Assuntos
Descolamento Retiniano , Perfurações Retinianas , Humanos , Perfurações Retinianas/diagnóstico , Perfurações Retinianas/cirurgia , Perfurações Retinianas/complicações , Descolamento Retiniano/diagnóstico , Descolamento Retiniano/cirurgia , Estudos Retrospectivos , Recurvamento da Esclera/métodos , Retina
9.
Biochem Biophys Res Commun ; 694: 149409, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38141558

RESUMO

The NLRP3 inflammasome has gained significant attention due to its participation in diverse cellular processes. Nevertheless, the detailed framework of the canonical NLRP3 inflammasome assembly still remains unrevealed. This study aims to elucidate the transcriptomic landscape of the various stages involved in the canonical activation of the NLRP3 inflammasome in BMDMs by integrating RNA-seq, bioinformatics, and molecular dynamics analyses. The model for the canonical activation of the NLRP3 inflammasome was confirmed through morphological observations, functional assessments (ELISA and LDH), and protein detection (western blot). Subsequently, cells were subjected to RNA sequencing following three groups: control, priming (LPS 500 ng/ml, 4 h), and activation (LPS 500 ng/ml, 4 h; ATP 5 mM, 1 h). A total of 9116 differentially expressed genes (DEGs) were identified, which exerted regulatory effects on various pathways, including cell metabolism, ion fluxes, post-translational modifications, and organelles. Subsequently, six hub genes (Sirt3, Stat3, Syk, Trpm2, Tspo, and Txnip) were identified via integrating literature review and database screening. Finally, the three-dimensional structures of these six hub proteins were obtained using the MD-optimized RoseTTAFold and Gromacs simulations (at least 200 ns). In summary, our research offers novel insights into the transcriptomic-level understanding of the assembly of the canonical NLRP3 inflammasome.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Perfilação da Expressão Gênica , Interleucina-1beta/metabolismo
10.
ACS Cent Sci ; 9(9): 1827-1834, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37780354

RESUMO

Storage phosphors displaying defect emissions are indispensable in technologically advanced radiation dosimeters. The current dosimeter is limited to the passive detection mode, where ionizing radiation-induced deep-trap defects must be activated by external stimulation such as light or heat. Herein, we designed a new type of shallow-trap storage phosphor by controlling the dopant amounts of Ag+ and Bi3+ in the host lattice of Cs2NaInCl6. A distinct phenomenon of X-ray-induced emission (XIE) is observed for the first time in an intrinsically nonemissive perovskite. The intensity of XIE exhibits a quantitative relationship with the accumulated dose, enabling a real-time radiation dosimeter. Thermoluminescence and in situ X-ray photoelectron spectroscopy verify that the emission originates from the radiative recombination of electrons and holes associated with X-ray-induced traps. Theoretical calculations reveal the evolution process of Cl-Cl dimers serving as hole trap states. Analysis of temperature-dependent radioluminescence spectra provides evidence that the intrinsic electron-phonon interaction in 0.005 Ag+@ Cs2NaInCl6 is significantly reduced under X-ray irradiation. Moreover, 0.025 Bi3+@ Cs2NaInCl6 shows an elevated sensitivity to the accumulated dose with a broad response range from 0.08 to 45.05 Gy. This work discloses defect manipulation in halide double perovskites, giving rise to distinct shallow-trap storage phosphors that bridge traditional deep-trap storage phosphors and scintillators and enabling a brand-new type of material for real-time radiation dosimetry.

11.
Chem Commun (Camb) ; 59(84): 12617-12620, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37791606

RESUMO

A novel radio-photoluminescence material featuring fluorochromic responses toward UV or X-ray irradiation has been obtained. Such a unique monomer- to excimer-based luminescence transition allows for dosimetry of ionizing radiation in a ratiometric manner. Rather than quenching the luminescence, the radiation-induced radical species of Th-105 boost the excimer emission, rendering it as a rare material possessing radical-excimers.

12.
BMC Plant Biol ; 23(1): 455, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37770835

RESUMO

BACKGROUND: Salt stress is one of the key factors limiting rice production. Alginate oligosaccharides (AOS) enhance plant stress resistance. However, the molecular mechanism underlying salt tolerance in rice induced by AOS remains unclear. FL478, which is a salt-tolerant indica recombinant inbred line and IR29, a salt-sensitive rice cultivar, were used to comprehensively analyze the effects of AOS sprayed on leaves in terms of transcriptomic and metabolite profiles of rice seedlings under salt stress. RESULTS: In this experiment, exogenous application of AOS increased SOD, CAT and APX activities, as well as GSH and ASA levels to reduce the damage to leaf membrane, increased rice stem diameter, the number of root tips, aboveground and subterranean biomass, and improved rice salt tolerance. Comparative transcriptomic analyses showed that the regulation of AOS combined with salt treatment induced the differential expression of 305 and 1030 genes in FL478 and IR29. The expressed genes enriched in KEGG pathway analysis were associated with antioxidant levels, photosynthesis, cell wall synthesis, and signal transduction. The genes associated with light-trapping proteins and RLCK receptor cytoplasmic kinases, including CBA, LHCB, and Lhcp genes, were fregulated in response to salt stress. Treatment with AOS combined with salt induced the differential expression of 22 and 50 metabolites in FL478 and IR29. These metabolites were mainly related to the metabolism of amino and nucleotide sugars, tryptophan, histidine, and ß -alanine. The abundance of metabolites associated with antioxidant activity, such as 6-hydroxymelatonin, wedelolactone and L-histidine increased significantly. Combined transcriptomic and metabolomic analyses revealed that dehydroascorbic acid in the glutathione and ascorbic acid cycles plays a vital role in salt tolerance mediated by AOS. CONCLUSION: AOS activate signal transduction, regulate photosynthesis, cell wall formation, and multiple antioxidant pathways in response to salt stress. This study provides a molecular basis for the alleviation of salt stress-induced damage by AOS in rice.


Assuntos
Oryza , Transcriptoma , Plântula/genética , Plântula/metabolismo , Antioxidantes/metabolismo , Oryza/metabolismo , Estresse Salino/genética , Glutationa/metabolismo , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia
13.
Inorg Chem ; 62(39): 15834-15841, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37724987

RESUMO

A highly sensitive detection of ultraviolet (UV) radiation is required in a broad range of scientific research, chemical industries, and health-related applications. Traditional UV photodetectors fabricated by direct wide-band-gap inorganic semiconductors often suffer from several disadvantages such as complicated manufacturing procedures, requiring multiple operations and high-cost instruments to obtain a readout. Searching for new materials or simple strategies to develop UV dosimeters for quantitative, accurate, and on-site detection of UV radiation dose is still highly desirable. Herein, a photochromic uranyl-based coordination polymer [(UO2)(PBPCA)·DMF]·DMF (PBPCA = pyridine-3,5-bis(phenyl-4-carboxylate), DMF = N,N'-dimethylformamide, denoted as SXU-1) with highly radiolytic and chemical stabilities was successfully synthesized via the solvothermal method at 100 °C. Surprisingly, the fresh samples of SXU-1 underwent an ultra-fast UV-induced (365 nm, 2 mW) color variation from yellow to orange in less than 1 s, and then the color changed further from orange to brick red after the subsequent irradiation, inspiring us to develop a colorimetric dosimeter based on red-green-blue (RGB) parameters. The mechanism of radical-induced photochromism was intensively investigated by UV-vis absorption spectra, EPR analysis, and SC-XRD data. Furthermore, SXU-1 was incorporated into an optoelectronic device to fabricate a novel dosimeter for convenient, quantitative, and on-site detection of UV radiation dose.

14.
IEEE Trans Pattern Anal Mach Intell ; 45(12): 15883-15895, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37651494

RESUMO

Domain adaptation (DA) aims to alleviate the domain shift between source domain and target domain. Most DA methods require access to the source data, but often that is not possible (e.g., due to data privacy or intellectual property). In this paper, we address the challenging source-free domain adaptation (SFDA) problem, where the source pretrained model is adapted to the target domain in the absence of source data. Our method is based on the observation that target data, which might not align with the source domain classifier, still forms clear clusters. We capture this intrinsic structure by defining local affinity of the target data, and encourage label consistency among data with high local affinity. We observe that higher affinity should be assigned to reciprocal neighbors. To aggregate information with more context, we consider expanded neighborhoods with small affinity values. Furthermore, we consider the density around each target sample, which can alleviate the negative impact of potential outliers. In the experimental results we verify that the inherent structure of the target features is an important source of information for domain adaptation. We demonstrate that this local structure can be efficiently captured by considering the local neighbors, the reciprocal neighbors, and the expanded neighborhood. Finally, we achieve state-of-the-art performance on several 2D image and 3D point cloud recognition datasets.

15.
Int J Biol Macromol ; 248: 125793, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442505

RESUMO

Designing wound dressings with inherent multifunctional therapeutic effects is desirable for clinical applications. Herein, a series of multifunctional carboxymethyl chitosan (CMCS)-based hydrogels were fabricated by the facile urate oxidase (UOX)-horseradish peroxidase (HRP) cascade enzymatic crosslinking system. For the first time, the cascade enzymatic crosslinking system was not only used for preparing hydrogel wound dressings but also for accelerating wound healing due to the activity retention of the self-compartmental enzymes. A CMCS derivative (HCMCS-mF) synthesized by successively grafting 4-hydroxybenzaldehyde (H) and 5-methylfurfural (mF) on CMCS and a quaternary ammonium crosslinker (QMal) with terminal grafting maleimide (Mal) groups were combined with enzymatic system for the facile preparation of hydrogels. The mild Diels-Alder (DA) crosslinking reaction between mF and Mal groups constructed the first network of hydrogels. The cascade UOX-HRP system mediated the oxidative crosslinking of phenols thus forming the second gel network. Self-entrapped UOX maintained its enzymatic activity and could continuously catalyze the oxidation of uric acid, generating therapeutic allantoin. These porous, degradable, mechanically stable hydrogels with excellent antioxidant performance and enhanced antibacterial capacity could effectively accelerate skin wound repair by simultaneously reducing oxidative stress, relieving inflammation, promoting collagen deposition and upregulating the expression level of CD31.


Assuntos
Quitosana , Hidrogéis , Cicatrização , Pele , Materiais Biocompatíveis , Antibacterianos/farmacologia , Peroxidase do Rábano Silvestre
16.
Micromachines (Basel) ; 14(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37420952

RESUMO

In order to realize direct manufacturing of cavity inside metal without assembly, this paper investigates the mechanism of cavity manufacturing inside metals under compound acoustic fields. First, a local acoustic cavitations model is established to study the single bubble generation at fixed point in Ga-In metal droplets, which has a low melting point. Second, cavitation-levitation acoustic composite fields are integrated with the experimental system for simulation and experimentation. Through COMSOL simulation and experimentation, this paper expounds the manufacturing mechanism of metal internal cavity under acoustic composite fields. The key problem is to control the duration of the cavitation bubble by controlling the driving acoustic pressure's frequency and the magnitude of ambient acoustic pressure. Under the condition of composite acoustic fields, this method realizes the direct fabrication of cavity inside Ga-In alloy for the first time.

17.
J Am Chem Soc ; 145(24): 13161-13168, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37287236

RESUMO

Lanthanide organic frameworks (Ln-MOFs) have attracted increasing research enthusiasm as photoluminescent materials. However, limited luminescence efficiency stemming from restricted energy transfer efficiency from the organic linker to the metal center hinders their applications. Herein, a uranyl sensitization approach was proposed to boost the luminescence efficiency of Ln-MOFs in a distinct heterobimetallic uranyl-europium organic framework. The record-breaking photoluminescence quantum yield (PLQY, 92.68%) among all reported Eu-MOFs was determined to benefit from nearly 100% energy transfer efficiency between UO22+ and Eu3+. Time-dependent density functional theory and ab initio wave-function theory calculations confirmed the overlap of excited state levels between UO22+ and Eu3+, which is responsible for the efficient energy transfer process. Coupled with intrinsically strong stopping power toward X-ray of the uranium center, SCU-UEu-2 features an ultralow detection limit of 1.243 µGyair/s, outperforming the commercial scintillator LYSO (13.257 µGyair/s) and satisfying the requirement of X-ray diagnosis (below 5.5 µGyair/s) in full.

18.
J Am Chem Soc ; 145(27): 14679-14685, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37366004

RESUMO

225Ac is considered as one of the most promising radioisotopes for alpha-therapy because its emitted high-energy α-particles can efficiently damage tumor cells. However, it also represents a significant threat to healthy tissues owing to extremely high radiotoxicity if targeted therapy fails. This calls for a pressing requirement of monitoring the biodistribution of 225Ac in vivo during the treatment of tumors. However, the lack of imageable photons or positrons from therapeutic doses of 225Ac makes this task currently quite challenging. We report here a nanoscale luminescent europium-organic framework (EuMOF) that allows for fast, simple, and efficient labeling of 225Ac in its crystal structure with sufficient 225Ac-retention stability based on similar coordination behaviors between Ac3+ and Eu3+. After labeling, the short distance between 225Ac and Eu3+ in the structure leads to exceedingly efficient energy transduction from225Ac-emitted α-particles to surrounding Eu3+ ions, which emits red luminescence through a scintillation process and produces sufficient photons for clearcut imaging. The in vivo intensity distribution of radioluminescence signal originating from the 225Ac-labeled EuMOF is consistent with the dose of 225Ac dispersed among the various organs determined by the radioanalytical measurement ex vivo, certifying the feasibility of in vivo directly monitoring 225Ac using optical imaging for the first time. In addition, 225Ac-labeled EuMOF displays notable efficiency in treating the tumor. These results provide a general design principle for fabricating 225Ac-labeled radiopharmaceuticals with imaging photons and propose a simple way to in vivo track radionuclides with no imaging photons, including but not limited to 225Ac.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Humanos , Distribuição Tecidual , Radioisótopos , Compostos Radiofarmacêuticos , Neoplasias/tratamento farmacológico
19.
Angew Chem Int Ed Engl ; 62(33): e202306465, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37249485

RESUMO

The development of high-performance X-ray detectors requires scintillators with fast decay time, high light yield, stability, and X-ray absorption capacity, which are difficult to achieve in a single material. Here, we present the first example of a lanthanide chalcogenide of LaCsSiS4 : 1 % Ce3+ that simultaneously integrates multiple desirable properties for an ideal scintillator. LaCsSiS4 : 1 % Ce3+ demonstrates a remarkably low detection limit of 43.13 nGyair s-1 and a high photoluminescence quantum yield of 98.24 %, resulting in a high light yield of 50480±1441 photons/MeV. Notably, LaCsSiS4 : 1 % Ce3+ exhibits a fast decay time of only 29.35±0.16 ns, making it one of the fastest scintillators among all lanthanide-based inorganic scintillators. Furthermore, this material shows robust radiation and moisture resistance, endowing it with suitability for chemical processing under solution conditions. To demonstrate the X-ray imaging capacity of LaCsSiS4 : 1 % Ce3+ , we fabricated a flexible X-ray detector that achieved a high spatial resolution of 8.2 lp mm-1 . This work highlights the potential of lanthanide chalcogenide as a promising candidate for high-performance scintillators.

20.
Angew Chem Int Ed Engl ; 62(38): e202304638, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37258939

RESUMO

Halide perovskites (HPs) recently have emerged as one class of competitive scintillators for X-ray detection and imaging owing to its high quantum efficiency, short decay time, superior X-ray absorption capacity, low cost, and ease of crystal growth. The tunable structure and versatile chemical compositions of halide perovskites provide distinguishable advantages over traditional inorganic scintillators for optimizing scintillation performance. Since the first observation of the scintillation phenomenon in HPs, substantial efforts have been devoted to expanding the inventory of HP scintillators and regulating material properties. Understanding the relationship between the structure and scintillation properties of HP scintillators is essential for developing materials with improved X-ray detection and imaging capacities. This review summarizes strategies for improving the light yield of HP scintillators and provides a roadmap for improving the X-ray imaging performance. Additionally, methods for controlling the light propagation direction in HP scintillators are highlighted for improving X-ray imaging resolution. Finally, we highlight the current challenge in HP scintillators and provide a perspective on the future development of this emerging scintillator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...